Calculating Run Expectancy Tables

Below is some simple code for building a run expectancy table based on Statcast data. A run expectancy table gives the average number of runs scored after each base/out state. For example, with runners on 1st and 2nd and one out, the table gives the average number of runs that scored.

import pandas as pd
from pybaseball import statcast

def run_expectancy(start_date: str, end_date: str) -> pd.Series:
    Returns a run expectancy table based on Statcast data from `start_date` to `end_date`
    pitch_data: pd.DataFrame = statcast(start_dt=start_date, end_dt=end_date)

    # create columns for whether a runner is on each base
    for base in ("1b", "2b", "3b"):
        pitch_data[base] = pitch_data[f"on_{base}"].notnull()

    pitch_data["inning_final_bat_score"] = pitch_data.groupby(
        ["game_pk", "inning", "inning_topbot"]

    # filter down to one row per at-bat
    ab_data = pitch_data[pitch_data["pitch_number"] == 1]

    ab_data["runs_after_ab"] = (
        ab_data["inning_final_bat_score"] - ab_data["bat_score"]

    # group by base/out state and calculate mean runs scored after that state
    return ab_data.groupby(["outs_when_up", "1b", "2b", "3b"])["runs_after_ab"].mean()

Here’s what it looks like for 2021:

print(run_expectancy("2021-04-01", "2021-12-01"))
outs_when_up  1b     2b     3b   
0             False  False  False    0.507303
                            True     1.393333
                     True   False    1.135049
                            True     2.107407
              True   False  False    0.916202
                            True     1.745745
                     True   False    1.523861
                            True     2.446313
1             False  False  False    0.264921
                            True     0.958691
                     True   False    0.684807
                            True     1.409165
              True   False  False    0.534543
                            True     1.126154
                     True   False    0.923244
                            True      1.68007
2             False  False  False    0.101856
                            True     0.385488
                     True   False    0.324888
                            True     0.600758
              True   False  False    0.228621
                            True     0.493186
                     True   False    0.451022
                            True     0.825928

Author | Ben Wiener

Background in physics. Also interested in computing, robotics, hiking, woodworking, and other things.